
A new high-order algorithm for a class of nonlinear evolution equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 015202

(http://iopscience.iop.org/1751-8121/41/1/015202)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 03/06/2010 at 06:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/1
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 015202 (17pp) doi:10.1088/1751-8113/41/1/015202

A new high-order algorithm for a class of nonlinear
evolution equation*

Dingwen Deng and Zhiyue Zhang

School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097,
People’s Republic of China

E-mail: zhangzhiyue@njnu.edu.cn

Received 12 January 2007, in final form 30 October 2007
Published 12 December 2007
Online at stacks.iop.org/JPhysA/41/015202

Abstract
We derive a new finite difference scheme which is easily extended to fourth-
order accurate in both temporal and spatial dimensions. It is shown through
a discrete Fourier analysis that the method is unconditionally stable for a 2D
problem. It requires only a regular seven-point difference stencil similar to
that used in the standard second-order algorithms, such as the Crank–Nicolson
algorithm. Numerical experiments are conducted to test its high accuracy and
efficiency of the new algorithm.

PACS numbers: 02.70.Bf, 02.30.Ik

1. Introduction

In this paper, we are concerned with the numerical approximation to the nerve conduction
equation⎧⎨
⎩

utt − �ut − �u = f (u)ut + g(u) + H(x, t), (x, t) ∈ � × [0, T]
ut (x, t) = u(x, t) = 0, (x, t) ∈ ∂� × [0, T]
ut (x, 0) = v0(x), u(x, 0) = u0(x), x ∈ �,

(1.1)

where � ⊂ R2 is the rectangular domain, [0, T] is the interval and u0 and v0 are given
functions of sufficient smoothness.

In the process of nerve conduction, the nerve conduction signal u and its variability with
respect to time and space can be characterized by the two-dimensional pseudo-hyperbolic

* This project is partly supported by the National Natural Science Foundation of China (no 10471067), Natural
Science Foundation of Jiangsu Provincial Education Department (2005101TSJB156), Jiangsu Provincial Government
Scholarship for Overseas Studies and Jiangsu Provincial NSF (no BK2006215).

1751-8113/08/015202+17$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/1/015202
mailto:zhangzhiyue@njnu.edu.cn
http://stacks.iop.org/JPhysA/41/1

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

equation [1] in mathematics. Some results about the uniqueness and existence, and asymptotic
behavior of solutions for this class equation can be found in [2–4]. There are also some
numerical results for equation (1.1) in [5–8]. Since this kind of nonlinear evolution equation
can describe much physical phenomena and possess strong physical background, thus it is
necessary for us to develop the studies across-the-board and deeply from the theoretical point
of view or from the numerical analysis.

Various numerical finite difference schemes have been proposed to solve equation (1.1)
problems approximately. Most of these schemes are either first-order or second-order accurate
in space, and have poor quality if the mesh is not sufficiently refined. For many application
problems it is desirable to use high-order numerical algorithms to compute accurate solutions.
However, higher order discretizations are generally associated with large (non-compact)
stencils which increase the bandwidth of the resulting matrix and lead to a large number
of arithmetic operations, especially for higher dimensional problems.

To obtain satisfactory higher order numerical results with reasonable computational cost,
there have been attempts to develop higher order compact (HOC) schemes, which utilize only
the grid nodes directly adjacent to the central node. For example, Adam employed a highly
accurate compact implicit method for convective–diffusive and Burger’s equation in [9]. Noye
and Tan proposed a nine-point HOC implicit for unsteady 1D and 2D convection–diffusion
equations with constant coefficients in [10, 11], respectively. The scheme is third-order
accurate in space and second-order accurate in time. In [12], Karaa and Zhang developed a high
order alternating direction implicit (ADI) solution method for solving unsteady 2D convection–
diffusion problems, which is second-order accurate in time and fourth-order accurate in space.
In [13, 14], an efficient higher order algorithm which is fourth-order accurate in time and
fourth-order accurate in space was developed for 2D and 3D reaction–diffusion equations,
respectively. For the high-order finite difference method, there are some very good works in
[15] and in references cited therein.

In this paper, based on the work of [8, 14, 16], we propose a new high-order implicit
solution method for the nonlinear evolution problem (1.1). Numerical simulations of the
nonlinear nerve conduction are difficult on a normal computer in a reasonable time because
the higher order nonlinear equation imposes severe time step restrictions on the explicit
scheme, so the implicit method must be used. This new scheme is based on an approximate
factorization of finite difference operators, which only requires solutions of systems of tri-
diagonal equations. Meanwhile, there is no need to introduce approximations to the boundary
conditions of the second derivatives. Generally speaking, there are much difficulties for mixed
derivative terms in both temporal and spatial dimensions to construct a high-performance
scheme basing finite difference method. We overcome the difficulty which comes from the
mixed derivative term, derive the stability of the new algorithms, and reduce the computational
complexity and save computational works. In particular, this new method can obtain that the
order of another important physical parameter ut is the same as the one of parameter u. The
numerical experiments of the linear and nonlinear equations demonstrate that the new method
is efficient and robust with respect to mesh refinement and the time-step size. We remark that
this method can be applied to the degenerate PDE such as the Cahn–Hilliard equation and the
thin film equation.

The paper is organized as follows. In the following section, we will discuss this new
method based on approximate factorization. The stability of this algorithm will be discussed
in section 3. The extension to the nonlinear evolution equation will be discussed in section 4.
The improvement of the accuracy in the temporal dimension based on the Richardson
extrapolation will be presented in section 5, and section 6 presents linear and nonlinear
numerical experiments.

2

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

2. The Fourth-order algorithm based on approximate factorization

In order to simplify to discuss, we will first present the development of an efficient high-order
algorithm for the following equation:

utt − �ut − �u + ut = H(x, t), (x, t) ∈ � × [0, T]. (2.1)

The result will then be generalized to equation (1.1).
In order to obtain the standard Crank–Nicolson scheme for equation (2.1), we set ut = v

and start from the Crank–Nicolson algorithm for equation (2.1) on the rectangular grid
(xi, yj), i = 0, 1, 2, . . . ,M, j = 0, 1, 2, . . . , N :

vn+1
i,j − vn

i,j

�t
− 1

2

[
(vxx)

n+1
i,j + (vxx)

n
i,j

] − 1

2

[
(vyy)

n+1
i,j + (vyy)

n
i,j

] − 1

2

[
(uxx)

n+1
i,j + (uxx)

n
i,j

]

− 1

2

[
(uyy)

n+1
i,j + (uyy)

n
i,j

]
+

un+1
i,j − un

i,j

�t
− 1

2

(
Hn+1

i,j + Hn
i,j

) = 0, (2.2)

(ut)
n+ 1

2
i,j = 1

2

(
vn+1

i,j + vn
i,j

)
.

The standard discretization is

vn+1
i,j − vn

i,j

�t
− 1

2

(
δ2
xv

n+1
i,j

h2
x

+
δ2
xv

n
i,j

h2
x

)
− 1

2

(
δ2
yv

n+1
i,j

h2
y

+
δ2
yv

n
i,j

h2
y

)
− 1

2

(
δ2
xu

n+1
i,j

h2
x

+
δ2
xu

n
i,j

h2
x

)

− 1

2

(
δ2
yu

n+1
i,j

h2
y

+
δ2
yu

n
i,j

h2
y

)
+

un+1
i,j − un

i,j

�t
= 1

2

(
Hn+1

i,j + Hn
i,j

)
, (2.3)

un+1
i,j − un

i,j

�t
= 1

2

(
vn+1

i,j + vn
i,j

)
,

which is second-order accurate in both time and space, where hx and hy represent the grid
spacing in the x and y dimensions, respectively. If we use the fourth-order Pade’ approximation
[9–14] to replace uxx, uyy, vxx and vyy , then we obtain the following expression:

vn+1
i,j − vn

i,j

�t
− 1

2

δ2
x

(
vn+1

i,j + vn
i,j

)
h2

x

(
1 + 1

12δ2
x

) − 1

2

δ2
y

(
vn+1

i,j + vn
i,j

)
h2

y

(
1 + 1

12δ2
y

) − 1

2

δ2
x

(
un+1

i,j + un
i,j

)
h2

x

(
1 + 1

12δ2
x

)
− 1

2

δ2
y

(
un+1

i,j + un
i,j

)
h2

y

(
1 + 1

12δ2
y

) +
un+1

i,j − un
i,j

�t
= 1

2

(
Hn+1

i,j + Hn
i,j

)
, (2.4)

un+1
i,j − �t

2
vn+1

i,j = �t

2
vn

i,j + un
i,j ,

which is second-order accurate in time and fourth-order accurate in space. Set rx = �t
h2

x
and

ry = �t
h2

y
, the first formula of (2.4) can be written as(

1 − rx

2

δ2
x

1 + 1
12δ2

x

− ry

2

δ2
y

1 + 1
12δ2

y

) (
vn+1

i,j + un+1
i,j

)

=
(

1 +
rx

2

δ2
x

1 + 1
12δ2

x

+
ry

2

δ2
y

1 + 1
12δ2

y

) (
vn

i,j + un
i,j

)
+

�t

2

(
Hn+1

i,j + Hn
i,j

)
, (2.5)

3

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

which can be approximately factorized as [9, 13, 14](
1 − rx

2

δ2
x

1 + 1
12δ2

x

)(
1 − ry

2

δ2
y

1 + 1
12δ2

y

) (
vn+1

i,j + un+1
i,j

)

=
(

1 +
rx

2

δ2
x

1 + 1
12δ2

x

) (
1 +

ry

2

δ2
x

1 + 1
12δ2

y

) (
vn

i,j + un
i,j

)
+

�t

2

(
Hn+1

i,j + Hn
i,j

)
. (2.6)

The difference between (2.5) and (2.6) is

rxry

4

δ2
x

1 + 1
12δx2

δ2
y

1 + 1
12δ2

y

(
vn+1

i,j + un+1
i,j

) − rxry

4

δ2
x

1 + 1
12δ2

x

δ2
y

1 + 1
12δ2

y

(
vn

i,j + un
i,j

)

= rxry

4

δ2
x

1 + 1
12δ2

x

δ2
y

1 + 1
12δ2

y

(
vn+1

i,j − vn
i,j + un+1

i,j − un
i,j

)

= rxry

4

δ2
x

1 + 1
12δ2

x

δ2
y

1 + 1
12δ2

y

(
vn+1

i,j − vn
i,j

�t
�t +

un+1
i,j − un

i,j

�t
�t

)

= �t2

4

δ2
x

h2
x

(
1 + 1

12δ2
x

) δ2
y

h2
y

(
1 + 1

12δ2
y

){[
(utt)

n+ 1
2

i,j + O(�t2)
]
�t

+
[
(ut)

n+ 1
2

i,j + O(�t2)
]
�t

}
= �t2

4

{[(
uttxxyy)

n+ 1
2

i,j + O
(
h2

xh
2
y

)
+ O(�t2)

]
�t

+
[
(utxxyy)

n+ 1
2

i,j + O
(
h2

xh
2
y

)
+ O(�t2)

]
�t

}
= O(�t3) + O(�t5) (2.7)

as long as all relevant partial derivatives in the error estimate are bounded. This additional
error is of the same order as the truncation error in the original algorithm (2.5). Since the
operators in (2.6) commute, we can simplify the algorithm by multiplying equation (2.6) by(
1 + δ2

x

12

)(
1 +

δ2
y

12

)
, which gives[

1 +

(
1

12
− rx

2

)
δ2
x

] [
1 +

(
1

12
− ry

2

)
δ2
y

] (
vn+1

i,j + un+1
i,j

)
=

[
1 +

(
1

12
+

rx

2

)
δ2
x

] [
1 +

(
1

12
+

ry

2

)
δ2
y

] (
vn

i,j + un
i,j

)

+
�t

2

(
1 +

δ2
x

12

) (
1 +

δ2
y

12

) (
Hn+1 + Hn

i,j

)
. (2.8)

Set ψn+1
i,j = vn+1

i,j + un+1
i,j and ψn

i,j = vn
i,j + un

i,j , equation (2.8) can be written as[
1 +

(
1

12
− rx

2

)
δ2
x

] [
1 +

(
1

12
− ry

2

)
δ2
y

]
ψn+1

i,j

=
[

1 +

(
1

12
+

rx

2

)
δ2
x

] [
1 +

(
1

12
+

ry

2

)
δ2
y

]
ψn

i,j

+
�t

2

(
1 +

δ2
x

12

) (
1 +

δ2
y

12

) (
Hn+1 + Hn

i,j

)
. (2.9)

4

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

Hence, we have the numerical approximation algorithm of equation (2.1) as follows. We will
first solve equation (2.9) in two steps:[

1 +

(
1

12
− rx

2

)
δ2
x

]
ψ∗

i,j =
[

1 +

(
1

12
+

rx

2

)
δ2
x

] [
1 +

(
1

12
+

ry

2

)
δ2
y

]
ψn

i,j

+
�t

2

(
1 +

δ2
x

12

) (
1 +

δ2
y

12

) (
Hn+1

i,j + Hn
i,j

)
, (2.10)

[
1 +

(
1

12
− ry

2

)
δ2
y

]
ψn+1

i,j = ψ∗
i,j . (2.11)

And then combining the equation

un+1
i,j − �t

2
vn+1

i,j = �t

2
vn

i,j + un
i,j ,

we have the expressions of un+1
i,j and vn+1

i,j as(
un+1

i,j

vn+1
i,j

)
= (1 + 0.5�t)−1

(
1 0.5�t

−1 −0.5�t

) (
un

i,j

vn
i,j

)
+

(
0.5�t

1

)
wn+1

i,j . (2.12)

The solutions to equations (2.10) and (2.11) can be obtained by solving tri-diagonal
equations since the left-hand sides of (2.10) and (2.11) include only three-point central
difference operators δ2

x and δ2
y as defined in [9–15]. Even though the right-hand side of

(2.10) includes the product of operators δ2
x and δ2

y , it does not complicate the solution process
since it is used to the known solution values from the previous time step.

While solving equation (2.10), we need boundary conditions for ψ∗
0,j and ψ∗

M+1,j , j =
1, 2, . . . , N . These conditions can be obtained from equation (2.11) and Dirichlet boundary
condition in (2.1) by setting i = 0 and i = M + 1, respectively:

ψ∗
0,j =

[
1 +

(
1

12
− ry

2

)
δ2
y

] (
un+1

0,j + vn+1
0,j

)
(2.13)

and

ψ∗
M+1,j =

[
1 +

(
1

12
− ry

2

)
δ2
y

] (
un+1

M+1,j + vn+1
M+1,j

)
. (2.14)

As the spatial discretization used in obtaining (2.10) is fourth-order accurate in space, the
boundary conditions given by (2.13) and (2.14) have the same spatial accuracy as (2.10). This
method avoids using one-sided difference approximations to the second spatial derivatives at
the boundary, as is required by the standard compact difference algorithms [9, 14].

3. Stability of the algorithm

We discuss the stability of algorithms (2.10)–(2.12). Let H(x, t) = 0, equation (2.9) can be
written as[

1 +

(
1

12
− rx

2

)
δ2
x

] [
1 +

(
1

12
− ry

2

)
δ2
y

]
ψn+1

i,j

=
[

1 +

(
1

12
+

rx

2

)
δ2
x

] [
1 +

(
1

12
+

ry

2

)
δ2
y

]
ψn

i,j . (3.1)

In order to study the stability of the new scheme, we use the Von Neumann linear stability
analysis. If we let ψn+1

i,j = ξn+1
lx ,ly

eI (βx ihx+βyjhy) to be the value of ψn+1
i,j at node (i, j), where

I = √−1, ξn+1
lx ,ly

is the amplitude at time level n + 1, βx = 2πlx and βy = 2πly, lx, ly ∈ Z,

the amplification factor G(βx, βy) = ξn+1
lx ,ly

/
ξn
lx ,ly

, for stability, has satisfied the relation

5

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

|G(βx, βy,�t)| � 1, for all rx, ry ∈ R. By substituting the expressions of ψn+1
i,j and

ψn
i,j in equation (3.1), the amplification factor is found to be

G(βx, βy,�t) =
[
1 − (

1
3 + 2rx

)
sin2 βxhx

2

][
1 − (

1
3 + 2ry

)
sin2 βyhy

2

]
[
1 − (

1
3 − 2rx

)
sin2 βxhx

2

][
1 − (

1
3 − 2ry

)
sin2 βxhy

2

] . (3.2)

A simple calculation shows that

|G(βx, βy,�t)| � 1, for all rx, ry ∈ R.

Hence, we conclude that the scheme (3.1) is unconditionally stable for initial value. So there
exists a constant C which is independent of �t, hx and hy in terms of the definition of stability
for initial value such that∥∥un+1 + un+1

t

∥∥ � C
∥∥u0 + u0

t

∥∥, (3.3)

where ‖·‖ is L2-norm. If we define

P =
(

σ 0.5�tσ

−σ −0.5�tσ

)

and use inductive inference, then the expression of P m+1 is given by

P m+1 =
(

σm+1(1 − 0.5�t)m 0.5�tσm+1(1 − 0.5�t)m

−σm+1(1 − 0.5�t)m −0.5�tσm+1(1 − 0.5�t)m

)
,

where σ = (1+0.5�t)−1. If we set Un = (
un

i,j , v
n
i,j

)T
and E = (0.5�t, 1)T , then the formula

(2.12) can be written as

Un+1 = PUn + Ewn+1
i,j . (3.4)

Using (3.4) repeatedly, we get

Un+1 = PUn + Ewn+1
i,j

= P
(
PUn−1 + Ewn

i,j

)
+ Ewn+1

i,j

= P 2Un−1 + PEwn
i,j + Ewn+1

i,j

= · · ·
= P n+1U 0 +

n∑
k=1

P n−k+1Ewk
i,j + Ewn+1

i,j . (3.5)

Using the Schwarz inequality, (3.3) and (3.5), we obtain

‖un+1‖2 + ‖vn+1‖2 =
M∑
i=1

N∑
j=1

(
un+1

i,j

)2
hxhy +

M∑
i=1

N∑
j=1

(
vn+1

i,j

)2
hxhy

� 2.5(1 − 0.5�t)2n

(1 + 0.5�t)2(n+1)

⎧⎨
⎩

M∑
i=1

N∑
j=1

(
u0

i,j

)2
hxhy +

M∑
i=1

N∑
j=1

(
v0

i,j

)2
hxhy

⎫⎬
⎭

+
n∑

k=1

⎧⎨
⎩2�t2(1 − 0.5�t)2(n−k)

(1 + 0.5�t)2(n−k+1)

M∑
i=1

N∑
j=1

(
uk

i,j + vk
i,j

)2
hxhy

⎫⎬
⎭

+ (1 + 0.25�t2)

M∑
i=1

N∑
j=1

(
un+1

i,j + vn+1
i,j

)2
hxhy

� C(‖u0‖2 + ‖v0‖2), (3.6)

6

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

where C is a generic constant, and is not independent of �t, hx and hy . Therefore, the new
finite difference scheme (2.10)–(2.12) is unconditionally stable for initial value with respect
to ‖·‖. By theorem 3.29 in [17], this scheme is also stable for the right-hand term H(x, t).
Hence we have the following result.

Theorem 2.1. Let u0 and v0 be the solutions to the scheme (2.10)–(2.12) at 0 time level, un+1

and vn+1 to the scheme (2.10)–(2.12) at n + 1 time level, then there exist positive constants
�x0,�y0 and �t0, such that

‖un+1‖2 +
∥∥un+1

t

∥∥2 � C

(
‖u0‖2 +

∥∥u0
t

∥∥2
+ �t

n∑
k=0

‖hk‖2

)
(3.7)

for (n+1)�t � T , 0 � hx � �x0, 0 � hy � �y0 and 0 � �t � �t0, where C is independent
of �t, hx and hy , and k denote the time level.

4. Numerical approximation for the nonlinear evolution equation

If we add ut to both sides of equation (1.1), we have

utt − �ut − �u + ut = (f (u) + 1)ut + g(u) + H(x, t). (4.1)

Set ut = v and F(u, v) = (f (u) + 1)v + g(u), we can write equation (1.1) as

vt − �v − �u + ut = F(u, v) + H(x, t). (4.2)

For the nonlinear evolution equation, algorithm (2.8) will result in the following equation:[
1 +

(
1

12
− rx

2

)
δ2
x

] [
1 +

(
1

12
− ry

2

)
δ2
y

] (
vn+1

i,j + un+1
i,j

)
=

[
1 +

(
1

12
+

rx

2

)
δ2
x

] [
1 +

(
1

12
+

ry

2

)
δ2
y

] (
vn

i,j + un
i,j

)

+
�t

2

(
1 +

δ2
x

12

) (
1 +

δ2
y

12

) (
Hn+1

i,j + Hn
i,j

)

+
�t

2

(
1 +

δ2
x

12

) (
1 +

δ2
y

12

) (
Fn+1

i,j + Fn
i,j

)
. (4.3)

Set ψn+1
i,j = un+1

i,j + vn+1
i,j and ψn

i,j = un
i,j + vn

i,j , we have the following algorithm:[
1 +

(
1

12
− rx

2

)
δ2
x

]
ψ∗

i,j =
[

1 +

(
1

12
+

rx

2

)
δ2
x

] [
1 +

(
1

12
+

ry

2

)
δ2
y

]
ψn

i,j

+
�t

2

(
1 +

δ2
x

12

) (
1 +

δ2
y

12

) (
Hn+1

i,j + Hn
i,j

)

+
�t

2

(
1 +

δ2
x

12

) (
1 +

δ2
y

12

) (
Fn+1

i,j + Fn
i,j

)
, (4.4)

[
1 +

(
1

12
− ry

2

)
δ2
y

]
ψn+1

ij = ψ∗
i,j , (4.5)

where rx = �t
h2

x
and ry = �t

h2
y
. Combining with the equation

un+1
i,j − �t

2
vn+1

i,j = �t

2
vn

i,j + un
i,j ,

7

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

we obtain

vn+1
i,j = ψn+1

i,j − 0.5�tvn
i,j − un

i,j

1 + 0.5�t
(4.6)

and

un+1
i,j = 0.5�tψn+1

i,j + 0.5�tvn
i,j + un

i,j

1 + 0.5�t
. (4.7)

Because that equation (4.4) contains solutions ψn
i,j , ψ

∗
i,j and ψn+1

i,j (implicitly in Fn+1
i,j),

equation (4.4) cannot be linearized by simply using Newton’s method, or its variations to
expand Fn+1

i,j at
(
un

i,j , v
n
i,j

)
.

In [14], an efficient way was used to overcome this difficulty. Here we will introduce this
way to deal with the nonlinear term. Note that the algorithm (4.3) can be written as[

1 +

(
1

12
− rx

2

)
δ2
x

] [
1 +

(
1

12
− ry

2

)
δ2
y

]
ψn+1

i,j

=
[

1 +

(
1

12
+

rx

2

)
δ2
x

] [
1 +

(
1

12
+

ry

2

)
δ2
y

]
ψn

i,j

+
�t

2

(
1 +

δ2
x

12

) (
1 +

δ2
y

12

) (
Hn+1

i,j + Hn
i,j

)

+
�t

2

[
1 +

(
1

12
+

rx

2

)
δ2
x

] (
1 +

δ2
y

12

)
Fn

i,j

+
�t

2

[
1 +

(
1

12
− rx

2

)
δ2
x

] (
1 +

δ2
y

12

)
Fn+1

i,j . (4.8)

The difference between (4.3) and (4.8) is(
1 +

δ2
y

12

)
�t

2

rx

2
δ2
x

(
Fn

i,j − Fn+1
i,j

) = O(�t3) + O(�t5), (4.9)

provided that all relative derivatives in the error estimate are bounded. This is of the same
order as the original truncation error in the algorithm (2.5). Therefore, we obtain the following
numerical approximation algorithm of equation (1.1):[

1 +

(
1

12
− rx

2

)
δ2
x

]
ψ∗

i,j =
[

1 +

(
1

12
+

rx

2

)
δ2
x

] [
1 +

(
1

12
+

ry

2

)
δ2
y

]
ψn

i,j

+
�t

2

(
1 +

δ2
x

12

) (
1 +

δ2
y

12

) (
Hn+1

i,j + Hn
i,j

)

+
�t

2

[
1 +

(
1

12
+

rx

2

)
δ2
x

] (
1 +

δ2
y

12

)
Fn

i,j , (4.10)

[
1 +

(
1

12
− ry

2

)
δ2
y

]
ψn+1

i,j = ψ∗
i,j +

�t

2

(
1 +

δ2
y

12

)
Fn+1

i,j , (4.11)

un+1
i,j − �t

2
vn+1

i,j = �t

2
vn

i,j + un
i,j . (4.12)

With this new formulation, equation (4.10) is linear and can be solved in a straightforward
manner. Equations (4.11) and (4.12) are nonlinear. To achieve high accuracy for strongly

8

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

nonlinear problems, Newton’s iterations can be applied to solve equations (4.11) and (4.12).
The initial approximations for Newton’s iterations are taken to be un and vn when the solutions
to equation (4.11) and (4.12) are calculated at n + 1 time level, namely,

(
un+1

i,j

)0 = un
i,j and(

vn+1
i,j

)0 = vn
i,j .

5. High-order accuracy in the temporal dimension

The algorithms given in (2.10)–(2.12) and (4.10)–(4.12) are fourth-order accurate in space,
but only second-order accurate in time. Because of the special formulae which led to
the fourth-order accuracy in space on a seven-point stencil, it is difficult to combine these
algorithms with available high-order ODE solution algorithms to obtain better accuracy in the
temporal dimension. Following the derivation from (2.2) to (2.8), we can see that the temporal
discretization is included in the very beginning of this algorithm development. Consequently,
it is difficult to use some of the well-established methods, such as the method of lines (MOL),
first to discretize the space derivatives, and then use the high-order ODE time integration
methods to get high temporal accuracy.

In [14], the Richardson extrapolation was applied to improve the accuracy in the temporal
dimension. Here we also applied the Richardson extrapolation on the computed solution to
eliminate the lower order term in the truncation error. As the Crank–Nicolson algorithm has
a temporal truncation error in the form of O(�t2) + O(�t3) + O(�t4), we apply

u = 4uh/2 − uh

3
(5.1)

and

ut = 4u
h/2
t − uh

t

3
(5.2)

to eliminate the term O(�t2), where uh/2 and uh are the solutions at the final time level
computed using �t = h and h/2, respectively. Likewise, uh

t and u
h/2
t are also the solutions

at the final time level computed using �t = h/2 and h, respectively. This makes the final
solution fourth-order accurate in both the temporal and spatial dimensions. Even though the
extrapolation needs three times as much computation as the original algorithm, the resulting
high-order accuracy permits the use of much larger time steps in the computation. For the
stability of this case, we can easily obtain to extend the above stability procedure.

6. Numerical results

We will give four examples to confirm the theoretical analysis presented in the previous
section. These examples with exact solutions against which we can compare the numerical
solution prove the efficiency and order of accuracy of the new algorithm in both the spatial
and temporal dimensions.

Example 1. The equations to be solved are

utt − �ut − �u + ut = h(x, t), (x, t) ∈ � × [0, T],
ut (x, t) = u(x, t) = 0, (x, t) ∈ ∂� × [0, T],
ut (x, 0) = −0.5 sin(πx1) sin(πx2), u(x, 0) = sin(πx1) sin(πx2), x ∈ �,

(6.1)

where � = [0, 1] × [0, 1] and h(x, t) = (π2 − 0.25) e−0.5t sin(πx1) sin(πx2). The exact
solutions of this test problem are u = e−0.5t sin(πx1) sin(πx2) and ut = −0.5 e−0.5t

9

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

Table 1. The maximum absolute error, l2-norm error and maximum relative error at t = 1.0,
�t = �x1 = �x2 = h.

h 1/4 1/5 1/8 1/10 1/16 1/20

erroru1 8.816E − 003 5.097E − 003 2.192E − 003 1.401E − 003 5.464E − 004 3.496E − 004
erroru1/h2 0.141 0.127 0.140 0.140 0.139 0.140
Eu1 4.408E − 003 2.818E − 003 1.096E − 003 7.005E − 004 2.732E − 004 1.748E − 004
errorv1 4.152E − 003 2.201E − 003 8.641E − 004 5.410E − 004 2.063E − 004 1.314E − 004
errorv1/h2 6.643E − 002 5.502E − 002 5.530E − 002 5.410E − 002 5.283E − 002 5.255E − 002
Ev1 2.076E − 003 1.217E − 003 4.321E − 004 2.705E − 004 1.032E − 004 6.568E − 005
Rerroru1 1.453E − 002 9.291E − 003 3.614E − 003 2.310E − 003 9.010E − 004 5.763E − 004
Rerrorv1 1.369E − 002 8.023E − 003 2.849E − 003 1.784E − 003 6.806E − 004 4.332E − 004
erroru2 4.543E − 004 1.642E − 004 2.700E − 005 1.100E − 005 1.661E − 006 6.755E − 007
erroru2/h4 0.116 0.103 0.111 0.109 0.102 0.108
Eu2 2.272E − 004 9.077E − 005 1.350E − 005 5.496E − 006 8.306E − 007 3.378E − 007
errorv2 6.869E − 005 2.227E − 005 3.223E − 006 1.271E − 006 1.834E − 007 7.247E − 008
errorv2/h4 1.758E − 002 1.271E − 002 1.392E − 002 1.320E − 002 1.202E − 002 1.159E − 002
Ev2 3.435E − 005 1.231E − 005 1.611E − 006 6.353E − 007 9.171E − 008 3.623E − 008
Rerroru2 7.491E − 004 2.993E − 004 4.451E − 005 1.812E − 005 2.739E − 006 1.114E − 006
Rerrorv2 2.265E − 004 8.120E − 005 1.063E − 005 4.200E − 006 6.048E − 007 2.390E − 007

Table 2. The maximum absolute error, l2-norm error and maximum relative error at t = 1.0,
�t = (�x1)2 = (�x2)2 = h2.

h 1/4 1/5 1/8 1/10 1/16 1/20

�t 1/16 1/25 1/64 1/100 1/256 1/400
erroru3 9.250E − 004 3.420E − 004 5.751E − 005 2.353E − 005 3.582E − 006 1.463E − 006
erroru3/h4 0.214 0.237 0.236 0.235 0.235 0.234
Eu3 4.625E − 004 1.890E − 004 2.875E − 005 1.177E − 005 1.791E − 006 7.314E − 007
errorv3 3.316E − 004 1.215E − 004 2.034E − 005 8.321E − 006 1.271E − 006 5.224E − 007
Ev3 1.658E − 004 6.717E − 005 1.017E − 005 4.161E − 006 6.355E − 007 2.612E − 007
errorv3/h4 8.488 − 002 7.594E − 002 8.330E − 002 8.321E − 002 8.330E − 002 8.359E − 002
Rerroru3 1.093E − 003 4.430E − 004 6.706E − 005 3.880E − 005 4.191E − 006 2.720E − 007
Rerrorv3 1.525E − 003 6.233E − 004 9.481E − 005 2.744E − 005 5.905E − 006 3.585E − 007

sin(πx1) sin(πx2). The data in table 1 show the maximum absolute error, l2-norm error
and maximum relative error between the calculated solution and the exact solution at t = 1.0.
The difference scheme given by (2.10)–(2.12) was used. We denote the maximum absolute
error of solutions u and v from the algorithm which is second-order accurate in time and
fourth-order accurate in space by erroru1 and errorv1, respectively. We use Eu1 and Ev1

to denote the l2-norm error of solutions u and v from the algorithm which is second-order
accurate in time and fourth-order accurate in space, respectively. The notations Rerroru1 and
Rerrorv1 represent the maximum relative error of solutions u and v from the algorithm that
is second-order accurate in time and fourth-order accurate in space, respectively. Likewise,
we denote the maximum absolute error of solutions u and v from the algorithm which is
fourth-order accurate in both the temporal and spatial dimensions by erroru2 and errorv2,
respectively. The notations Eu2 and Ev2 represent the l2-norm error of solutions u and v

from the algorithm which is fourth-order accurate in both time and space, respectively. The
notations Rerroru2 and Rerrorv2 represent the maximum relative error of solutions u and v

from the algorithm which is fourth-order accurate in both time and space, respectively. The
data in table 2 show the maximum absolute error, the l2-norm error and the maximum relative

10

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

error between the calculated solution and the exact solution at t = 1.0. The algorithm given by
(2.10)–(2.12) was used. The notations erroru3 and errorv3 represent the maximum absolute
error of solutions u and v from the algorithm which is second-order accurate in time and
fourth-order accurate in space, respectively. We denote l2-norm error of solutions u and v

from the algorithm which is second-order accurate in the temporal dimension and fourth-
order accurate in spatial dimension by Eu3 and Ev3, respectively. The notations Rerroru3

and Rerrorv3 represent the maximum relative error of u and v from the algorithm which is
second-order accurate in time and fourth-order accurate in space, respectively.

Obviously, we can see from table 1 that the error denoted by erroru1 and errorv1 shows
a second-order decrease, while that denoted by erroru2 and errorv2 shows a fourth-order
decrease. This is illustrated by the fact that the ratios of erroru1/h2, errorv1/h2, erroru2/h4

and errorv2/h4 keep roughly a constant as the computational grid is being refined. Each
time when the computation grid is refined by having �t,�x1 and �x2, erroru1 and errorv1

are reduced by a factor of 4 while erroru2 and errorv2 are reduced by a factor of 16. It is
also noted that for the same value of h, the l2-norm errors denoted by Eu2 and Ev2 and the
maximum relative errors represented by Rerroru2 and Rerrorv2 are much smaller than those
denoted by Eu1, Ev1, Rerroru1 and Rerrorv1, respectively. Table 2 shows similar results as
those represented by erroru1 and errorv1. Setting �t = (�x1)

2 and �x1 = �x2 = h, we
can see from table 2 that erroru3 and errorv3 are being reduced by a factor of 16 when h is
decayed by a factor of 2 each time, the ratios of erroru3/h4 and errorv3/h4 remain roughly a
constant as the computational grid is refined, indicating fourth-order convergence. However,
the accuracy is still not as good as those represented by erroru2 and errorv2. It is also observed
that for the same value of h, the l2-norm errors denoted by Eu3 and Ev3 are also slightly larger
than those represented by Eu2 and Ev2, respectively.

Example 2. This is a simple example of a two-dimensional linear equation. The equation to
be solved is

utt − �ut − �u = u + h(x, t), (x, t) ∈ � × [0, T],
ut (x, t) = u(x, t) = 0, (x, t) ∈ ∂� × [0, T],
ut (x, 0) = −sin(πx1) sin(πx2), u(x, 0) = sin(πx1) sin(πx2), x ∈ �,

(6.2)

where � = [0, 1] × [0, 1] and h(x, t) = (π2 − 0.75) e−0.5t sin πx1 sin(πx2). The exact
solutions of this test problem are u = e−0.5t sin(πx1) sin(πx2) and ut = −0.5 e−0.5t

sin(πx1) sin(πx2).

The linear case is the special nonlinear case, in order to test the accuracy of scheme
(4.10)–(4.12), we use the linear case here. This can make us to avoid to use the Newton
method, otherwise it will produce extra errors. It seems so hard to see the accuracy of the
scheme. In the following example, we will give a nonlinear case.

The data in table 3 show the maximum absolute error, L2-norm error and the maximum
relative error between the numerical solution and the analytical solution at t = 1.0. The
algorithm given by (4.9)–(4.11) was applied. The notations erroru4 and errorv4 represent
the maximum absolute error of solutions u and v from the algorithm which is second-order
accurate in time and fourth-order accurate in space, respectively. The notations erroru4 and
errorv4 represent the maximum absolute error of solutions u and v from the algorithm which
is second-order accurate in time and fourth-order accurate in space, respectively. Eu4 and
Ev4 represent the l2-norm error of solutions u and v from the algorithm which is second-order
accurate in time and fourth-order accurate in space, respectively. We denote the maximum
relative error of solutions u and v from the algorithm which is second-order accurate in time and

11

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

Table 3. The maximum absolute error and maximum relative error at t = 1.0, �t =
�x1 = �x2 = h.

h 1/4 1/5 1/8 1/10 1/16 1/20

erroru4 8.374E − 003 4.829E − 003 2.072E − 003 1.323E − 003 5.159E − 004 3.299E − 004
erroru4/h2 0.134 0.121 0.133 0.132 0.132 0.132
Eu4 4.187E − 003 2.670E − 003 1.036E − 003 6.617E − 004 2.579E − 004 1.650E − 004
errorv4 3.946E − 003 2.099E − 003 8.270E − 004 5.182E − 004 1.979E − 004 1.260E − 004
errorv4/h2 6.314E − 002 5.247E − 002 5.293E − 002 5.128E − 002 5.065E − 002 5.039E − 002
Ev4 1.973E − 003 1.160E − 003 4.135E − 004 2.591E − 004 9.893E − 005 6.292E − 005
Rerroru4 1.381E − 002 8.803E − 003 3.416E − 003 2.182E − 003 8.504E − 004 5.440E − 004
Rerrorv4 1.301E − 002 7.651E − 003 2.727E − 003 1.709E − 003 6.524E − 004 4.154E − 004
erroru5 4.661E − 004 1.689E − 004 2.785E − 005 1.135E − 005 1.716E − 006 6.981E − 007
erroru5/h4 0.119 0.105 0.114 0.113 0.112 0.106
Eu5 2.331E − 004 9.338E − 005 1.393E − 005 5.673E − 006 8.581E − 007 3.491E − 007
errorv5 4.000E − 005 1.223E − 005 1.625E − 006 6.248E − 007 8.625E − 008 3.250E − 008
errorv5/h4 1.024E − 002 7.643E − 003 6.657E − 003 6.248E − 003 5.653E − 003 5.248E − 003
Ev5 2.000E − 005 6.760E − 006 8.126E − 007 3.124E − 007 4.313E − 008 1.640E − 008
Rerroru5 7.685E − 004 3.079E − 004 4.592E − 005 1.871E − 005 2.830E − 006 1.151E − 006
Rerrorv5 1.319E − 004 4.458E − 005 5.359E − 006 2.060E − 006 2.844E − 007 1.082E − 007

Table 4. The maximum absolute error and maximum relative error at t = 1.0, �t = (�x1)2 =
(�x2)2 = h2.

h 1/4 1/5 1/8 1/10 1/16 1/20

�t 1/16 1/25 1/64 1/100 1/256 1/400
erroru6 9.143E − 004 3.379E − 004 5.681E − 005 2.324E − 005 3.538E − 006 1.445E − 006
erroru6/h4 0.234 0.211 0.233 0.232 0.232 0.231
Eu6 4.572E − 004 1.868E − 004 2.840E − 005 1.162E − 005 1.769E − 006 7.223E − 007
errorv6 3.308E − 004 1.213E − 004 2.030E − 005 8.303E − 006 1.268E − 006 5.213E − 007
errorv6/h4 8.468 − 002 7.579E − 002 8.313E − 002 8.303E − 002 8.312E − 002 8.341E − 002
Ev6 1.654E − 004 6.703E − 004 1.015E − 005 4.152E − 006 6.342E − 007 2.607E − 007
Rerroru6 1.507E − 003 6.159E − 004 9.366E − 005 3.832E − 005 5.832E − 006 2.382E − 006
Rerrorv6 1.091E − 003 4.421E − 004 6.692E − 005 2.738E − 005 4.182E − 006 1.719E − 006

fourth-order accurate in space by Rerroru4 and Rerrorv4, respectively. The notations erroru5

and errorv5 represent the maximum absolute error of solutions u and v from the algorithm
which is fourth-order accurate in both time and space, respectively. The notations Eu5 and
Ev5 denote the l2-norm error of solutions u and v from the algorithm which is fourth-order
accurate in both time and space, respectively. We denote the maximum relative error of u and
v from the algorithm which is fourth-order accurate in both time and space by Rerroru5 and
Rerrorv5, respectively. The data in table 4 show the maximum absolute error, the l2-norm
error and the maximum relative error between the calculated solution and the exact solution at
t = 1.0. The notations erroru6 and errorv6 represent the maximum absolute error of u and v

from the algorithm which is second-order accurate in time and fourth-order accurate in space,
respectively. We use Eu6 and Ev6 to denote the l2-norm error of u and v from the algorithm
which is second-order accurate in time and fourth-order accurate in space, respectively. The
notations Rerroru6 and Rerrorv6 represent the maximum relative error of solutions u and v

from the algorithm which is second-order accurate in time and fourth-order accurate in space,
respectively.

It is clear from table 3 that the error denoted by erroru4 and errorv4 shows a second-order
decrease, while that denoted by erroru5 and errorv5 shows a fourth-order decrease. This is

12

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

Table 5. The maximum absolute error, L2-norm error and maximum relative error at t = 1.0, CPU
times in seconds, �t = �x1 = �x2 = h.

h 1/4 1/5 1/8 1/10 1/16 1/20

erroru7 1.120E − 003 6.574E − 004 2.876E − 004 1.844E − 004 7.198E − 005 1.591E − 005
Eu7 5.573E − 004 3.624E − 004 1.431E − 004 9.176E − 005 3.582E − 005 2.285E − 005
errorv7 2.308E − 003 1.276E − 003 5.243E − 004 3.319E − 004 1.281E − 004 8.179E − 005
Ev7 1.158E − 003 7.061E − 004 2.625E − 004 1.662E − 004 6.414E − 005 4.094E − 005
Rerroru7 3.044E − 003 1.976E − 003 7.818E − 004 5.012E − 004 1.957E − 004 1.248E − 004
Rerrorv7 4.311E − 003 3.851E − 003 1.431E − 003 9.059E − 004 3.497E − 004 2.232E − 004
time7 0.000 0.000 0.000 0.010 0.060 0.17
erroru8 1.057E − 005 2.916E − 006 1.037E − 007 2.446E − 007 8.604E − 007 1.320E − 006
Eu8 5.273E − 006 1.589E − 006 4.374E − 008 1.260E − 007 4.298E − 007 6.590E − 007
errorv8 7.046E − 005 2.476E − 005 3.899E − 006 1.574E − 006 2.450E − 007 1.409E − 007
Ev8 3.591E − 005 1.384E − 005 1.975E − 006 7.969E − 007 1.243E − 007 5.819E − 008
Rerroru8 2.879E − 005 8.765E − 006 2.818E − 007 7.525E − 007 2.342E − 006 3.589E − 006
Rerrorv8 1.992E − 004 7.747E − 005 1.124E − 005 4.553E − 006 7.164E − 007 3.374E − 007
time8 0.000 0.000 0.010 0.030 0.220 0.580

proved by the fact that the ratios of erroru4/h2, errorv4/h2, erroru5/h4 and errorv5/h4 keep
roughly a constant as computational grid is being refined. Each time when the computational
grid is refined by having �t,�x1 and �x2, erroru4 and errorv4 are reduced by a factor of 4,
while erroru5 and errorv5 are reduced by a factor of 16. It is also noted that for the same value
of h, the l2-norm errors denoted by Eu5 and Ev5 and the maximum relative errors represented
by Rerroru5 and Rerroru5 are much smaller than those denoted by Eu4, Ev4, Rerroru4 and
Rerroru4, respectively. Table 4 shows analogous results as those denoted by erroru4 and
errorv4 in table 3. Setting �t = (�x1)

2 and �x1 = �x2 = h, we can see from table 4 that
erroru6 and errorv6 are now being reduced by a factor of 16 when h is reduced by a factor
of 2 each time, and the ratios of erroru6/h4 and errorv6/h4 keep approximately a constant
as the computational grid is refined, implying fourth-order convergence. Meanwhile, we find
that accuracy is not better than those presented by erroru5, errorv5, respectively. We also note
that the l2-norm errors denoted by Eu6 and Ev6 are also not smaller than those represented
by Eu5 and Ev5, respectively.

Example 3. This is an example of a two-dimensional nonlinear equation. The equation to be
solved is
utt − �ut − �u = uut + u2 + h(x, t), (x, t) ∈ � × [0, T],
ut (x, t) = u(x, t) = 0, (x, t) ∈ ∂� × [0, T],
ut (x, 0) = −sin(πx1) sin(πx2), u(x, 0) = sin(πx1) sin(πx2), x ∈ �,

(6.3)

where � = [0, 1] × [0, 1] and h(x, t) = e−t sin(πx1) sin(πx2). The exact solutions of this
test problem are u = e−t sin(πx1) sin(πx2) and ut = −e−t sin(πx1) sin(πx2).

The algorithm given by (4.9)–(4.11) and quasi-Newton iterative method was used. The
initial approximations for the quasi-Newton iterative method were taken to be un and vn when
the solutions to equations (4.9)–(4.11) are calculated at time level n+1, namely,

(
un+1

i,j

)0 = un
i,j

and
(
vn+1

i,j

)0 = vn
i,j . The iterations were terminated when the residual in maximum norm was

reduced by a factor of 1010.
The data in table 5 show the maximum absolute error, the l2-norm error and the maximum

relative error between the calculated solution and the exact solution at t = 1.0 and CPU times in
seconds. We denote the maximum absolute error of solutions u and v from the algorithm which

13

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

Table 6. The maximum absolute error, L2-norm error and maximum relative error at t = 1.0, CPU
times in seconds, �t = (�x1)2, �x1 = �x2 = h.

h 1/4 1/5 1/8 1/10 1/16 1/20

erroru9 7.203E − 005 2.628E − 005 1.819E − 006 4.458E − 006 3.917E − 006 1.591E − 005
Eu9 3.584E − 005 1.448E − 005 9.017E − 007 2.227E − 006 1.055E − 006 7.750E − 006
errorv9 1.281E − 004 4.728E − 005 7.907E − 006 3.133E − 006 1.281E − 007 1.860E − 006
Ev9 6.414E − 005 2.616E − 005 3.957E − 006 1.566E − 006 1.867E − 007 9.679E − 007
Rerroru9 1.958E − 004 7.898E − 005 4.945E − 006 1.212E − 005 1.957E − 005 2.587E − 004
Rerrorv9 3.491E − 004 1.424E − 004 2.154E − 005 8.518E − 006 1.210E − 006 5.888E − 006
time7 0.000 0.000 0.030 0.080 0.93 3.14

is second-order accurate in time and fourth-order accurate in space by erroru7 and errorv7,
respectively. Eu7 and Ev7 denote the l2-norm error of solutions u and v from the algorithm
which is second-order accurate in time and fourth-order accurate in space, respectively. The
notations Rerroru7 and Rerrorv7 represent the maximum relative error of solutions u and v

from the algorithm which is second-order accurate in time and fourth-order accurate in space,
respectively. The notation time7 denote the total elapsed time (CPU) in seconds delivered
from the algorithm which is second-order accurate in time and fourth-order accurate in space.
Likewise, we denote the maximum absolute error of solutions u and v from the algorithm
which is fourth-order accurate in both time and space by erroru8 and errorv8, respectively.
Eu8 and Ev8 denote the l2-norm error of solutions u and v from the algorithm which is fourth-
order accurate in both time and space, respectively. The notations Rerroru8 and Rerrorv8

represent, respectively, the maximum relative error of solutions u and v from the algorithm
which is fourth-order accurate in both time and space. We use time8 to denote the total elapsed
time (CPU) in seconds delivered from the algorithm which is fourth-order accurate in both
time and space. The data in table 6 show the maximum absolute error, the l2-norm error and
the maximum relative error between the calculated solution and the exact solution at t = 1.0
and CPU times in seconds. We denote the maximum absolute error of solutions u and v from
the algorithm which is second-order accurate in time and fourth-order accurate in space by
erroru9 and errorv9, respectively. We denote the l2-norm error of solutions u and v from the
algorithm which is second-order accurate in time and fourth-order accurate in space by Eu9

and Ev9, respectively. The notations Rerroru9 and Rerrorv9 represent the maximum relative
error of solutions u and v from the algorithm which is second-order accurate in time and
fourth-order accurate in space, respectively. The notation time9 denote the total elapsed time
(CPU) in seconds delivered from the algorithm which is second-order accurate in time and
fourth-order accurate in space.

We can see from table 5 that for the same value of h, the maximum absolute errors
denoted by erroru8 and errorv8 are much smaller than those denoted by erroru7 and errorv7,
respectively, and the l2-norm errors represented by Eu8 and Ev8 are much smaller than those
denoted by Eu7 and Ev7, respectively, although time consumption represented by time8 is a
little more than the one denoted by time7. It is also noted from tables 5 and 6 that for the same
value of h, the accuracy denoted by erroru9, errorv9, Eu9 and Ev9 is not as good as the one
represented by erroru8, errorv8, Eu8 and Ev8, while time consumption represented by time9

is more than the one denoted by time8, especially as the meshsize h is very small, for example
h = 0.05; and the grid size reduces the maximum relative error of the solution decreases as
well. As above, the numerical method combining the difference scheme (4.9)–(4.11) with
the Richardson extrapolation technique is highly efficient for solving this kind of nonlinear
evolution equation.

14

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

Table 7. The maximum absolute error and l2-norm error at t = 1.0,�t = �x1 = �x2 = h.

h 1/4 1/5 1/8 1/10 1/16 1/20

erroru10 7.091E − 002 4.685E − 002 1.945E − 002 1.237E − 002 4.797E − 003 3.064E − 003
Eu10 4.252E − 002 2.662E − 002 1.012E − 002 6.437E − 003 2.496E − 003 1.594E − 003
errorv10 9.251E − 002 7.024E − 002 2.838E − 002 1.794E − 002 6.917E − 003 4.413E − 003
Ev10 6.553E − 002 3.994E − 002 1.479E − 002 9.350E − 003 3.603E − 003 2.298E − 003
erroru11 3.253E − 003 1.154E − 003 1.876E − 004 7.514E − 005 8.267E − 006 4.179E − 007
Eu11 1.580E − 003 6.240E − 004 9.135E − 005 3.660E − 005 3.991E − 006 2.509E − 007
errorv11 2.848E − 003 1.102E − 003 1.717E − 004 6.859-005 5.799E − 006 3.096E − 006
Ev11 1.296E − 003 5.283E − 004 7.980E − 005 3.191-005 2.569E − 006 1.736E − 006

Table 8. The maximum absolute error and at t = 1.0,�t = �x1 = �x2 = h.

h 1/4 1/8 1/10 1/16 1/20 1/32

erroru10 1.106 1.257 1.264 1.263 1.260 1.253
errorv10 1.336 1.263 1.236 1.189 1.181 1.226
erroru11 1.056 1.238 1.251 1.258 1.257 1.252
errorv11 1.111 1.229 1.218 1.183 1.179 1.225

Example 4. In this example, first we test our new scheme for continuous case of the following
nonlinear equation, then for discontinuous case of the nonlinear equation

utt − �ut − �u = 0.5ut + 3π2u − u2 + h(x, t), (x, t) ∈ � × [0, T],
ut (x, t) = u(x, t) = 0, (x, t) ∈ ∂� × [0, T],
ut (x, 0) = 0.5 sin(πx1) sin(πx2), u(x, 0) = sin(πx1) sin(πx2), x ∈ �,

(6.4)

where � = [0, 1] × [0, 1] and h(x, t) = et (sin(πx1) sin(πx2)
2. The exact solution of this

problem is u = e0.5t sin(πx1) sin(πx2). In tables 7 and 8, we denote the maximum absolute
error of solutions u and v from the method which we apply directly to the formulae (4.9)–(4.11)
to solve this problem by erroru10 and errorv10, respectively. The notations Eu10 and Ev10

denote the l2-norm error of solutions u and v from the algorithm which we use directly to the
formulae (4.9)–(4.11). The notations erroru11 and errorv11 represent the maximum absolute
error of solutions u and v from the algorithm which we use to the formulae (4.9)–(4.11) and
the Richardson extrapolation technique to solve this problem. Eu11 and Ev11 represent the
l2-norm error of solutions u and v from the algorithm which we use to the formulae (4.9)–
(4.11) and the Richardson extrapolation technique to solve this problem, respectively. In
table 9, we denote the absolute error of solutions u and v at the mesh point (i, j) from
the method which we apply directly to the formulae (4.9)–(4.11) to solve the discontinuous
problem by erroru12 and errorv12, respectively. The notations erroru13 and erroru13 represent
the absolute error of solutions u and v at the mesh point (i, j) from the algorithm which
we use to the formulae (4.9)–(4.11) and the Richardson extrapolation technique to solve this
discontinuous problem. Similarly with example 3, we obtain the good calculation results for
this continuous test problem in table 7.

Our numerical schemes assume that the solution is smooth. Otherwise the accuracy will
deteriorate. If we choose discontinuous initial conditions,

u(x, 0) = −sin(πx1) sin(πx2), ut (x, 0) = −0.5 sin(πx1) sin(πx2),

(x1, x2) ∈ [0, 0.5] × [0.1] (6.5)

u(x, 0) = sin(πx1) sin(πx2), ut (x, 0) = 0.5 sin(πx1) sin(πx2)

(x1, x2) ∈ (0.5, 1] × [0, 1] (6.6)

15

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

Table 9. The absolute error at the mesh point (i, j) at t = 1.0,�t = �x1 = �x2 = 0.0625.

(x1, x2) erroru12 errorv12 erroru13 errorv13 (x1, x2) erroru12 errorv12 erroru13 errorv13(1
16 , 1

2

)
1.133 0.179 0.133 0.179

(9
16 , 1

2

)
1.168 1.099 1.163 1.094(1

8 , 1
2

)
0.166 0.355 0.267 0.354

(
5
8 , 1

2

)
1.001 1.011 0.999 1.005(3

16 , 1
2

)
0.399 0.522 0.401 0.521

(11
16 , 1

2

)
0.885 0.889 0.833 0.885(1

4 , 1
2

)
0.533 0.677 0.534 0.675

(3
4 , 1

2

)
0.666 0.742 0.666 0.738(

5
16 , 1

2

)
0.666 0.815 0.667 0.812

(13
16 , 1

2

)
0.499 0.574 0.499 0.606(3

8 , 1
2

)
0.798 0.928 0.798 0.926

(7
8 , 1

2

)
0.333 0.391 0.333 0.413(7

16 , 1
2

)
0.927 1.013 0.925 1.010

(
15
16 , 1

2

)
0.177 0.198 0.166 0.197(1

2 , 1
2

)
1.052 1.063 1.048 1.059

(
1, 1

2

)
0.000 0.000 0.000 0.000

and obtain the true solution of the test problem:

u(x, 0) = −e0.5t sin(πx1) sin(πx2), (x1, x2) ∈ [0, 0.5] × [0.1] (6.7)

u(x, 0) = e0.5t sin(πx1) sin(πx2), (x1, x2) ∈ (0.5, 1] × [0, 1]. (6.8)

We will obtain the following terrible numerical results in tables 8 and 9.

7. Summary

An efficient numerical method based on the Pade’ approximation and Richardson extrapolation
for solving the 2D generalized nerve conduction equation is discussed in this paper. It is
fourth-order accurate in both time and space, uses a compact five-point finite difference stencil
similar to that applied in the standard second-order algorithm, such as the Crank–Nicolson,
and allows a considerable saving in computing time. The method is easily extendible to multi-
dimensional problems. Our test problems involving both the linear term and the nonlinear
term are conducted to demonstrate the high-order accuracy in both temporal and spatial
dimensions. For the continuous case, our theoretical analysis and numerical results indicate
the new method has good numerical stability and high efficiency. In examples 1–3, for two
cases of �t = h and �t = h2, the results of l2- and l∞-norms are shown in tables 1–6. For
every case in examples 1–3, with the spacial step h decreasing, the errors in l2- and l∞-norms
are decreasing. Convergence orders coincide with the ones of the theoretical analysis. On the
other hand, although the computational grid size is refined (i.e. for the case of �t = h2), the
accuracy of the algorithm in which the Richardson extrapolation is not used is not as good as
the one of the algorithms in which the Richardson extrapolation is used; we also find that the
computational cost in the former case is larger than that in the latter case. In addition, we test
the discontinuous case in example 4, the results show that the new scheme is not suitable for
this case, because our numerical schemes assume that the solution is smooth.

In a word, the difference scheme given by (2.10)–(2.12) and (4.9)–(4.12) are both second-
order accurate in time and fourth-order accurate in space, respectively. Numerical results
which we have provided indicate the accuracy in the temporal dimension is indeed increased
to fourth-order accurate by using the Richardson extrapolation, and these methods have good
numerical stability and their time cost is cheap, especially our new numerical method is very
efficient for solving this kind of nonlinear continuous problems. However, the numerical
results from example 4 demonstrate the new numerical algorithm is not suitable for solving

16

J. Phys. A: Math. Theor. 41 (2008) 015202 D Deng and Z Zhang

discontinuous problem. Since many models in science and engineering have discontinuous
solutions, we will work on extending this new method to the problems and find better numerical
method to solve this kind of discontinuous problems.

Acknowledgments

The authors are grateful to Professor Zhilin Li for his many help. The second author also
would like to thank Professor Charlie Elliott and Professor Kewei Zhang for their kindness to
provide wonderful work facilities when he visits the University of Sussex.

References

[1] Pao C V 1985 An mixed initial boundary value problem arising in neurophysiology J. Math. Anal. Appl.
52 105–19

[2] Ponce G 1985 Global existence of small solutions to a class of nonlinear evolution equations Nonlinear Anal.
9 399–418

[3] Liu Y C and Yu T 1995 Blow-up of the nerve conduction equation Acta Math. Appl. Sin. 18 264–71
[4] Wan W W and Liu C Y 1999 Long-time behavior of initial boundary problem for equation of nerve conduction

Acta Math. Appl. Sin. 22 311–4
[5] Gao B X et al 2000 The finite difference method for the initial-boundary-value problem of the equation

utt = uxxt + f (ux)x [J] Math. Numer. Sin. 22 166–76 (in Chinese)
[6] Zhang Z Y 2002 ASE-I parallel numerical method for a class of nonlinear evolution equation Chin. J. Comput.

Mech. 19 154–8
[7] Zhang Z Y and Wei H 2003 A multistep characteristic finite difference method for a class of nerve conduction

equations N. P. Sci. Comput. 11 315–23
[8] Zhang Z Y 2005 The finite element numerical analysis for a class of nonlinear evolution equations Appl. Math.

Comput. 166 489–500
[9] Adam Y 1977 Highly accurate compact implicit methods and boundary conditions J. Comput. Phys. 24 10–22

[10] Noye B J and Tan H H 1988 A third-order semi-implicit finite difference method for solving the one-dimensional
convection–diffusion equation Int. J. Numer. Methods Eng. 26 1615–29

[11] Noye B J and Tan H H 1988 Finite difference methods for solving the two-dimensional advection–diffusion
equation Int. J. Numer Methods Fluids 26 1615–29

[12] Karaa S and Zhang J 2004 High order ADI method for solving unsteady convection–diffusion problems
J. Comput. Phys. 198 1–9

[13] Liao W, Zhu J and Khaliq A Q M 2002 An efficient high order algorithm for solving systems of reaction–diffusion
equations J. Numer. Methods Partial Diff. Eqns 18 340–54

[14] Gu Y, Liao W and Zhu J 2003 An efficient high-order algorithm for solving systems of 3-d reaction–diffusion
equations J. Comput. Appl. Math. 155 1–17

[15] Singer I and Turquel E 1998 High-order finite difference method for the Helmholtz equation Comput. Methods
Appl. Mech. Eng. 163 343–58

[16] Zhang Z Y 2004 An economical difference scheme for heat transport equation at the microscale J. Numer.
Methods Partial Diff. Eqns 20 855–63

[17] Hu W J and Tang M H 2003 The numerical method for differential equations, Science Press J. Comput. Appl.
Math. 155 1–17

17

http://dx.doi.org/10.1016/0022-247X(75)90057-8
http://dx.doi.org/10.1016/0362-546X(85)90001-X
http://dx.doi.org/10.1016/j.amc.2004.06.049
http://dx.doi.org/10.1016/0021-9991(77)90106-1
http://dx.doi.org/10.1002/nme.1620260711
http://dx.doi.org/10.1016/j.jcp.2004.01.002
http://dx.doi.org/10.1002/num.10012
http://dx.doi.org/10.1016/S0377-0427(02)00889-0
http://dx.doi.org/10.1016/S0045-7825(98)00023-1
http://dx.doi.org/10.1002/num.20014
http://dx.doi.org/10.1016/S0377-0427(02)00889-0

	1. Introduction
	2. The Fourth-order algorithm based on approximate factorization
	3. Stability of the algorithm
	4. Numerical approximation for the nonlinear evolution equation
	5. High-order accuracy in the temporal dimension
	6. Numerical results
	7. Summary
	Acknowledgments
	References

